
Chapter 9. Methods

In This Chapter

In this chapter we will get more familiar with what methods are and why we

need to use them. The reader will be shown how to declare methods, what

parameters are and what a method’s signature is, how to call a method,

how to pass arguments of methods and how methods return values. At the

end of this chapter we will know how to create our own method and how to

use (invoke) it whenever necessary. Eventually, we will suggest some good

practices in working with methods. The content of this chapter accompanied

by detailed examples and exercises that will help the reader practice the

learned material.

Subroutines in Programming

To solve a certain task, especially if it is a complex one, we apply the method

that ancient Romans did “divide and conquer”. According to this principle,
the problem we solve must be divided into small subproblems. Taken

separately they are well defined and easy to be resolved compared to the

original problem. At the end by finding solutions for all the small problems we

solve the complex one.

Using the same analogy, whenever we write a software program we aim to

solve particular task. To do it in an efficient and “easy-to-make” way we use
the same mentioned above principle “divide and conquer”. We separate the
given task into smaller tasks, then develop solutions for them and put them

together into one program. Those smaller tasks we call subroutines.

In some other programming languages subroutines can be named as

functions or procedures. In C#, they are called methods.

What Is a "Method"?

A method is a basic part of a program. It can solve a certain problem,

eventually take parameters and return a result.

A method represents all data conversion a program does, to resolve a

particular task. Methods consist of the program’s logic. Moreover they are

the place where the “real job” is done. That is why methods can be taken as a

base unit for the whole program. This on the other hand, gives us the

opportunity, by using a simple block, to build bigger programs, which resolve

more complex and sophisticated problems. Below is a simple example of a

method that calculates rectangle’s area:

294 Fundamentals of Computer Programming with C#

static double GetRectangleArea(double width, double height)
{
 double area = width * height;

 return area;
}

Why to Use Methods?

There are many reasons we should use methods. Some of them are listed

below, and by gaining experience, you will assure yourself that methods are

something that cannot be avoided for a serious task.

Better Structured Program and More Readable Code

Whenever a program has been created, it is always a good practice to use

methods, in a way to make your code better structured and easy to

read, hence to be maintained by other people.

A good reason for this is the fact, that of the time that a program exists, only

about 20% of the effort is spent on creating and testing the program. The rest

is for maintenance and adding new features to the initial version. In most of

the cases, once the code has been released, it is maintained not only from its

creator, but by many other developers. That is why it is very important for the

code to be as well structured and readable as possible.

Avoid Duplicated Code

Another very important reason to use methods is that methods help us to

avoid code repeating. This has a strong relationship to the idea of code

reuse.

Code Reuse

If a piece of code is used more than once in a program, it is good to separate

it in a method, which can be called many times – thus enabling reuse of the

same code, without rewriting it. This way we avoid code repeating, but this

is not the only advantage. The program itself becomes more readable and

well structured.

Repeating code may become very noxious and hazardous, because it impedes

the maintenance of the program and leads to errors. Often, whenever change

of repeating code is needed, the developer fixes only some of the blocks, but

the problems is still alive in the others, about which they forgot. So for

example if a defect is found into a piece of 50 lines code, that is copied to 10

different places over the program, to fix the defect, the repeated code must

be fixed for the all 10 places. This, however, is not what really happens.

Often, due to lack of concentration or some other reasons, the developer

fixes only some of the pieces of code, but not all of them. For example,

Chapter 9. Methods 295

let’s say that in our case the developer has fixed 8 out of 10 blocks of code.

This eventually, will lead to unexpected behavior of our program, only in rare

cases and, moreover, it will be very a difficult task to find out what is going

wrong with the program.

How to Declare, Implement and Invoke a Method?

This is the time to learn how to distinguish three different actions related to

existing of a method: declaring, implementation (creation) and calling of a

method.

Declaring a method we call method registration in the program, so it can be

successfully identified in the rest of the program.

Implementation (creation) of a method is the process of typing the code

that resolves a particular task. This code is in the method itself and

represents its logic.

Method call is the process that invokes the already declared method, from a

part of the code, where a problem, that the method resolves, must be solved.

Declaring Our Own Method

Before we learn how to declare our own method, it is important to know

where we are allowed to do it.

Where Is Method Declaration Allowed?

Although we still haven’t explained how to declare a class, we have seen it in

the exercises before. We know that every class has opening and closing curly

brackets – "{" and "}", between which the program code is placed. More

detailed description for this can be found in the chapter "Defining Classes",

however we mention it here, because a method exists only if it is declared

between the opening and closing brackets of a class – "{" and "}". In

addition a method cannot be declared inside another method's body (this will

be clarified later).

In the C# language, a method can be declared only between

the opening "{" and the closing "}" brackets of a class.

A typical example for a method is the already known method Mainſ…ƀ – that

is always declared between the opening and the closing curly brackets of our

class. An example for this is shown below:

HelloCSharp.cs

public class HelloCSharp
{ // Opening brace of the class

296 Fundamentals of Computer Programming with C#

 // Declaring our method between the class' body braces
 static void Main(string[] args)
 {

 Console.WriteLine("Hello C#!");
 }
} // Closing brace of the class

Method Declaration

To declare a method means to register the method in our program. This is

shown with the following declaration:

[static] <return_type> <method_name>([<param_list>])

There are some mandatory elements to declare method:

- Type of the result, returned by the method – <return_type>.

- Method’s name – <method_name>.

- List of parameters to the method – <param_list> – it can be empty list

or it can consist of a sequence of parameters declarations.

To clarify the elements of method’s declaration, we can use the Mainſ…ƀ

method from the example HelloCSharp show in the previous block:

static void Main(string[] args)

As can be seen the type of returned value is void (i.e. that method does

not return a result), the method’s name is Main, followed by round brackets,

between which is a list with the method’s parameters. In the particular

example it is actually only one parameter – the array string[] args.

The sequence, in which the elements of a method are written, is strictly

defined. Always, at the very first place, is the type of the value that method

returns <return_type>, followed by the method’s name <method_name> and

list of parameters at the end <param_list> placed between in round brackets

– "(" and ")". Optionally the declarations can have access modifiers (as

public and static).

When a method is declared keep the sequence of its

elements description: first is the type of the value that the

method returns, then is the method’s name, and at the end is

a list of parameters placed in round brackets.

The list with parameters is allowed to be void (empty). In that case the only

thing we have to do is to type "()" after the method’s name. Although the

Chapter 9. Methods 297

method has not parameters the round brackets must follow its name in the

declaration.

The round brackets – "(" and ")", are always placed after the

method’s name, no matter whether it has or has not any

parameters.

For now we will not focus at what <return_type> is. For now we will use

void, which means the method will not return anything. Later, we will see

how that can be changed

The keyword static in the description of the declaration above is not

mandatory but should be used in small simple programs. It has a special

purpose that will be explained later in this chapter. Now the methods that we

will use for example, will include the keyword static in their declaration.

More about methods that are not declared as static will be discussed in the

chapter "Defining Classes", section "Static Members".

Method Signature

Before we go on with the basic elements from the method’s declaration, we

must pay attention to something more important. In object-oriented

programming a method is identified by a pair of elements of its declaration:

name of the method, and list of parameters. These two elements define the

so-called method specification (often can be found as a method

signature).

C#, as a language used for object oriented programming, also distinguishes

the methods using their specification (signature) – method’s name

<method_name> and the list with parameters – <param_list>.

Here we must note that the type of returned value of a method is only part of

its declaration, not of its signature.

What identifies a method is its signature. The return type is

not part of the method signature. The reason is that if two

methods differ only by their return value types, for the

program is not clear enough which of them must be called.

A more detailed explanation on why the type of the returned value is not part

of the method signature, you will find later in this chapter.

Method Names

Every method solves a particular task from the whole problem that our

program solves. Method’s name is used when method is called. Whenever

we call (start) a particular method, we type its name and if necessary we pass

values (if there are any).

In the example below, the name of our method is PrintLogo:

298 Fundamentals of Computer Programming with C#

static void PrintLogo()
{
 Console.WriteLine("Microsoft");

 Console.WriteLine("www.microsoft.com");
}

Rules to Name a Method

It is recommended, when declare a method, to follow the rules for method

naming suggested by Microsoft:

- The name of a method must start with capital letter.

- The PascalCase rule must be applied, i.e. each new word, that

concatenates so to form the method name, must start with capital

letter.

- It is recommended that the method name must consist of verb, or verb

and noun.

Note that these rules are not mandatory, but recommendable. If we aim our

C# code to follow the style of all good programmers over the globe, we must

use Microsoft’s code convention. A more detailed recommendation about

method naming will be given in the chapter "High-Quality Code", section

"Naming Methods".

Here some examples for well named methods:

Print

GetName
PlayMusic
SetUserName

And some examples for bad named methods:

Abc11

Yellow___Black
foo
_Bar

It is very important that the method name describes the method’s purpose.

All behind this idea is that when a person that is not familiar with our program

reads the method name, they can easily understand what that method does,

without the need to look at the method’s source code.

To name a method it is good to follow these rules:

- Method name must describe the method’s purpose.

- Method name must begin with capital letter.

Chapter 9. Methods 299

- The PascalCase rule must be applied.

- The method name must consist of verb, or verb and

noun.

Modifiers

A modifier is a keyword in C#, which gives additional information to the

compiler for a certain code.

We have already met some modifiers – public and static. Now we will

briefly describe what modifiers are actually. Detailed description will be given

later in the chapter "Defining Classes", section "Access Modifiers". So let’s
begin with an example:

public static void PrintLogo()

{
 Console.WriteLine("Microsoft");
 Console.WriteLine("www.microsoft.com");

}

With this example we define a public method by the modifier public. It is a

special type modifier, called also access modifier and is used to show that

method can be called by any C# class, no matter where it is. Public modifiers

are not restricted in the meaning of “who” can call them.

Another example for access modifier, that we can meet, is the modifier

private. Its function is opposite to that of the public, i.e. if a method is

declared by access modifier private, it cannot be called from anywhere,

except from the class in which it is declared.

If a method is declared without an access modifier (either public or

private), it is accessible from all classes in the current assembly, but not

accessible for any other assemblies (let say from other projects in Visual

Studio). For the same reason, when we are writing small programs, like those

in this chapter, we will not specify access modifiers.

For now, the only thing that has to be learned is that in method declaration

there cannot be more than one access modifier.

When a method has a keyword static, in its declaration, this method is

called static. To call a static method there is no need to have an instance of a

class in which the static method is declared. For now the reader can accept

that, the methods must be static. Dealing with non-static methods will be

explained in the chapter "Defining Classes", section "Methods".

300 Fundamentals of Computer Programming with C#

Implementation (Creation) of Own Method

After a method had been declared, we must write its implementation. As we

already explained above, implementation (body) of the method consists of

the code, which will be executed by calling the method. That code must be

placed in the method’s body and it represents the method’s logic.

The Body of a Method

Method body we call the piece of code, that is placed in between the curly

brackets "{" and "}", that directly follow the method declaration.

static <return_type> <method_name>(<parameters_list>)
{
 // … code goes here – in the method's body …
}

The real job, done by the method, is placed exactly in the method body. So,

the algorithm used in the method to solve the particular task is placed in the

method body.

So far we have seen many examples of method body however, we will show

one more with the code below:

static void PrintLogo()
{ // Method's body starts here

 Console.WriteLine("Microsoft");
 Console.WriteLine("www.microsoft.com");
} // … And finishes here

Let’s consider one more time one rule about method declaration:

Method can NOT be declared inside the body of another

method.

Local Variables

Whenever we declare a variable inside the body of a method, we call that

variable local variable for the method. To name a variable we should follow

the identifiers rules in C# (refer to chapter "Primitive Types and Variables").

The area where a local variable exists, and can be used, begins from the line

where the variable is declared and ends at the closing curly bracket "}" of the

method body. This is the so-called area of visibility of the variable

(variable scope). If we try to declare variable, after we have already

declared a variable with the same name, the code will not compile due to an

error. Let’s look at the example below:

Chapter 9. Methods 301

static void Main()
{
 int x = 3;

 int x = 4;
}

Compiler will not let’s use the name x for two different variables, and will

return a message similar to the one below:

A local variable named 'x' is already defined in this scope.

A block of code we call a code that is placed between opening and closing

curly brackets "{" and "}".

If a variable is declared within a block, it is also called local (for this block).

Its area of visibility begins from the line where the variable is declared, and

ends at the line where block’s closing bracket is.

Invoking a Method

Invoking or calling a method is actually the process of execution of the

method’s code, placed into its body.

It is very easy to invoke a method. The only thing that has to be done is to

write the method’s name <method_name>, followed by the round brackets and

semicolon ";" at the end:

<method_name>();

Later will see an example for when the invoked method has a parameter list

(in the case here the method has no parameters).

To clarify how method invocation works, the next fragment shows how the

method PrintLogo() will be called:

PrintLogo();

Result of method’s execution is:

Microsoft
www.microsoft.com

Who Takes Control over the Program when We

Invoke a Method?

When a method executes it takes control over the program. If in the caller

method, however, we call another one, the caller will give the control to the

called method. The called method will return back the control to the caller

302 Fundamentals of Computer Programming with C#

right after its execution finishes. The execution of the caller will continue from

that line, where it was before calling the other method.

For example, let’s call PrintLogo() from the Main() method:

First the code of method Main(), that is marked with (1) will be executed,

then the control of the program will be given to the method PrintLogo() –

the dotted arrow (2). This will cause the execution of the code in method

PrintLogo(), numbered with (3). When the method PrintLogo() work is

done, the control over the program is returned back to the method Main() –

dotted arrow (4). Execution of Main() will continue from the line after

PrintLogo() call – marked with (5).

Where a Method Can Be Invoked From?

A method can be invoked from the following places:

- From the main program method – Main():

static void Main()
{

 PrintLogo();
}

- From some other method:

static void PrintLogo()
{

 Console.WriteLine("Microsoft");

Chapter 9. Methods 303

 Console.WriteLine("www.microsoft.com");
}

static void PrintCompanyInformation()
{
 // Invoking the PrintLogo() method

 PrintLogo();

 Console.WriteLine("Address: One, Microsoft Way");

}

- A method can be invoked from its own body. Such a call is referred to as

recursion. We will discuss it in details in the chapter "Recursion".

Method Declaration and Method Invocation

In C# the order of the methods in the class is not important. We are allowed

to invoke (call) a method before it is declared in code:

static void Main()

{
 // …
 PrintLogo();

 // …
}

static void PrintLogo()
{
 Console.WriteLine("Microsoft");

 Console.WriteLine("www.microsoft.com");
}

If we create a class that contains the code above, we will see that the code

will compile and run successfully. It doesn’t matter whether we declared the

method before or after the main method. In some other languages (like

Pascal), invocation of a method that is declared below the line of the

invocation is not allowed.

If a method is called in the same class, where it is declared

and implemented, it can be called at a line before the line at

which it is declared.

Parameters in Methods

Often to solve certain problem, the method may need additional information,

which depends on the environment in what the method executes.

304 Fundamentals of Computer Programming with C#

So if there is a method, that has to find the area of a square, in its body there

must be the algorithm that finds that area (equation S = a2). Since the area

depends on the square side length, to calculate that equation for each square,

the method will need to pass a value for the square side length. That is why

we have to pass somehow that value, and for this purpose we use

parameters.

Declaring Methods with Parameters

To pass information necessary for our method we use the parameters list.

As was already mentioned, we must place it between the brackets following

the method name, in method the declaration:

static <return_type> <method_name>(<parameters_list>)
{
 // Method's body

}

The parameters list <parameters_list> is a list with zero or more

declarations of variables, separated by a comma, so that they will be used

for the implementation of the method’s logic:

<parameters_list> = [<type1> <name1>[, <typei> <namei>]],

where i = 2, 3, …

When we create a method, and we need certain information to develop the

particular algorithm, we choose that variable from the list, which is of type

<typei> and so we use it by its name <namei>.

The parameters from the list can be of any type. They can be primitive types

(int, double, …) or object types (for example string or array – int[],

double[], string[], …).

Method to Display a Company Logo – Example

To make the mentioned above more clear, we will change the example that

shows the logo of "Microsoft":

static void PrintLogo(string logo)

{
 Console.WriteLine(logo);
}

Now, executing our method, we can display the logo of other companies, not

only of "Microsoft". This is possible because we used a parameter of type

string to pass the company name. The example shows how to use the

information given in the parameters list – the variable logo, which is defined

Chapter 9. Methods 305

in the parameters list, is used in the method’s body by the name given in the

definition.

Method to Calculate the Sum of Prices of Books – Example

We mentioned above, that whenever it is necessary we can use arrays as

parameters for a certain method (int[], double[], string[], …). So let’s
take a look at another example to illustrate this.

Imagine we are in a bookstore and we want to calculate the amount of money

we must pay for all the books we bought. We will create a method that gets

the prices of all the books as an array of type decimal[], and then returns

the total amount we must pay:

static void PrintTotalAmountForBooks(decimal[] prices)
{
 decimal totalAmount = 0;

 foreach (decimal singleBookPrice in prices)
 {
 totalAmount += singleBookPrice;

 }
 Console.WriteLine("The total amount for all books is:" +
 totalAmount);

}

Method Behavior According to Its Input

When a method with parameters is declared, our purpose is that every time

we invoke the method, its result changes according to its input. Said with

another word, the algorithm is the same, but due to input change, the result

changes too.

When a method has parameters, its behavior depends upon

parameters values.

Method to Show whether a Number is Positive – Example

To clarify the way method execution depends upon its input let’s take look at

another example. The method gets as input a number of type int, and

according to it returns to the console "Positive", "Negative" or "Zero":

static void PrintSign(int number)
{
 if (number > 0)

 {
 Console.WriteLine("Positive");
 }

 else if (number < 0)

306 Fundamentals of Computer Programming with C#

 {
 Console.WriteLine("Negative");
 }

 else
 {
 Console.WriteLine("Zero");

 }
}

Method with Multiple Parameters

So far we had some examples for methods with parameter lists that consist of

a single parameter. When a method is declared, however, it can have as

multiple parameters as the method needs.

If we are asking for maximal of two values, for example, the method needs

two parameters:

static void PrintMax(float number1, float number2)
{
 float max = number1;

 if (number2 > max)
 {

 max = number2;
 }
 Console.WriteLine("Maximal number: " + max);

}

Difference in Declaration of Methods with Multiple Parameters

When a method with multiple parameters is declared, we must note that even

if the parameters are of the same type, usage of short way of variable

declaration is not allowed. So the line below in the methods declaration is

invalid and will produce compiler error:

float var1, var2;

Type of the parameters has to be explicitly written before each parameter, no

matter if some of its neighbors are of the same type.

Hence, declaration like one shown below is not valid:

static void PrintMax(float var1, var2)

Correct way to do so is:

Chapter 9. Methods 307

static void PrintMax(float var1, float var2)

Invoking Methods with Parameters

Invocation of a method with one or several parameters is done in the same

way as invocation of methods without parameters. The difference is that

between the brackets following the method name, we place values. These

values (called arguments) will be assigned to the appropriate parameters

form the declaration and will be used when method is executed.

Several examples for methods with parameters are show below:

PrintSign(-5);
PrintSign(balance);

PrintMax(100.0f, 200.0f);

Difference between Parameters and Arguments of a Method

Before we continue with this chapter, we must learn how to distinguish

between parameters naming in the parameters list in the methods declaration

and the values that we pass when invoking a method.

To clarify, when we declare a method, any of the elements from the

parameters list we will call parameters (in other literature sources they can

be named as formal parameters).

When we call a method the values we use to assign to its parameters are

named as arguments.

In other words, the elements in the parameters list (var1 and varr2) are

called parameters:

static void PrintMax(float var1, float var2)

Accordingly, the values by the method invocation (-23.5 and 100) are called

arguments:

PrintMax(100.0f, -23.5f);

Passing Arguments of a Primitive Type

As just was explained, in C# when a variable is passed as a method

argument, its value is copied to the parameter from the declaration of the

method. After that, the copy will be used in the method body.

There is, however, one thing we should be aware of. If the declared

parameter is of a primitive type, the usage of the arguments does not

308 Fundamentals of Computer Programming with C#

change the argument itself, i.e. the argument value will not change for the

code after the method has been invoked.

So if we have piece of code like that below:

static void PrintNumber(int numberParam)

{
 // Modifying the primitive-type parameter
 numberParam = 5;

 Console.WriteLine("in PrintNumber() method, after " +
 "modification, numberParam is: {0}", numberParam);

}

Invocation of the method from Main():

static void Main()
{

 int numberArg = 3;

 // Copying the value 3 of the argument numberArg to the

 // parameter numberParam
 PrintNumber(numberArg);

 Console.WriteLine("in the Main() method numberArg is: " +
 numberArg);
}

The value 3 of numberArg, is copied into the parameter numberParam. After

the method PrintNumber() is invoked, to numberParam is assigned value 5.

This does not affect the value of variable numberArg, because by invocation of

that method, the variable numberParam keeps a copy of the argument value.

That is why the method PrintNumber() prints the number 5. Hence, after

invocation of method PrintNumber() in the method Main() what is printed is

the value of numberArg and as it can be seen that value is not changed. The

result from the above line is printed below:

in PrintNumber() method, after modification, numberParam is: 5
in the Main() method numberArg is: 3

Passing Arguments of Reference Type

When we need to declare (and so to invoke) a method, that has parameters

of reference type (as arrays), we must be very careful.

Before explaining the reason for the above consideration, we have to remind

ourselves something from chapter "Arrays". An array, as any other reference

Chapter 9. Methods 309

type, consists of a variable-pointer (object reference) and a value – the

real information kept in the computer’s memory (we call it an object). In our

case the object is the real array of elements. The address of this object,

however, is kept in the variable (i.e. the address where the array elements

are placed in the memory):

So whenever we operate with arrays in C#, we always access them by that

variable (the address / pointer / reference) we used to declare the particular

array. This is the principle for any other reference type. Hence, whenever an

argument of a reference type is passed to a method, the method’s parameter

receives the reference itself. But what happens with the object then (the real

array)? Is it also copied or no?

To explain this, let’s have the following example: assume we have method

ModifyArray(), that modifies the first element of an array that is passed as a

parameter, so it is reinitialized the first element with value 5 and then prints

the elements of the array, surrounded by square brackets and separated by

commas:

static void ModifyArray(int[] arrParam)
{

 arrParam[0] = 5;
 Console.Write("In ModifyArray() the param is: ");
 PrintArray(arrParam);

}

static void PrintArray(int[] arrParam)

{
 Console.Write("[");
 int length = arrParam.Length;

 if (length > 0)
 {
 Console.Write(arrParam[0].ToString());

 for (int i = 1; i < length; i++)
 {
 Console.Write(", {0}", arrParam[i]);

 }

 }
 Console.WriteLine("]");

}

arrArg: int[]

1 2 31 2 3[I@e48e1b

variable object

arrArg: int[]

1 2 31 2 31 2 31 2 3

310 Fundamentals of Computer Programming with C#

Let’s also declare a method Main(), from which we invoke the newly created

method ModifyArray():

static void Main()

{
 int[] arrArg = new int[] { 1, 2, 3 };

 Console.Write("Before ModifyArray() the argument is: ");
 PrintArray(arrArg);

 // Modifying the array's argument

 ModifyArray(arrArg);

 Console.Write("After ModifyArray() the argument is: ");
 PrintArray(arrArg);
}

What would be the result of the code execution? Let’s take a look:

Before ModifyArray() the argument is: [1, 2, 3]

In ModifyArray() the param is: [5, 2, 3]
After ModifyArray() the argument is: [5, 2, 3]

It is apparent that after execution of the method ModifyArray(), the array to

which the variable arrArg refer, does not consists of [1,2,3], but [5,2,3]

instead. What does this mean?

The reason for such result is the fact that by passing arguments of reference

type, only the value of the variable that keeps the address to the object is

copied. Note that this does not copy the object itself.

By passing the argument that are of reference type, the only

thing that is copied is the variable that keeps the reference

to the object, but not the object data.

Let’s try to illustrate what just was explained. We will use few drawings for

the example we used above. By invocation of the method ModifyArray(), the

value of the parameter arrParam is not defined and it does not keep a

reference to any particular object (not a real array):

arrParam: int[]

arrArg: int[]

[I@e48e1b 321 321

Chapter 9. Methods 311

By the time of ModifyArray() invocation, the value that is kept in the

argument arrArg is copied to the parameter arrParam:

This way, copying the reference to the elements of the array in the memory

from the argument into the parameter, we tell the parameter to point to the

same object, to which the argument points:

This actually is where we have to be very careful. If the invoked method

modifies the object, to which a reference is passed, this may affect the

execution of the code after the method invocation (as we have seen in the

example – the method PrintArray() does not print the array, that was

initially passed).

The difference between dealing with arguments of primitive and reference

type is in the way they are passed: primitive types are passed by their

values, the objects, however, are passed by reference.

Passing of Expressions as Method Arguments

When a method is invoked, we can pass a whole expression instead of

arguments. By doing so, C# calculates the values for those expressions and

by the time of code execution (if it is possible this is done at compile time)

replaces the expression with its result, when the method is invoked. The

following code shows methods invocation, by passing expressions as

method arguments:

PrintSign(2 + 3);

float oldQuantity = 3;
float quantity = 2;

PrintMax(oldQuantity * 5, quantity * 2);

The result of those methods execution is:

arrParam: int[]

arrArg: int[]

[I@e48e1b 321 321

(copy)

arrParam: int[]

[I@e48e1b

arrParam: int[]

[I@e48e1b

arrArg: int[]

[I@e48e1b 321 321

312 Fundamentals of Computer Programming with C#

Positive
Maximal number: 15.0

When a method with parameters is invoked, we must be aware of some

specific rules, which will be explained in the next few subsections.

Passing of Arguments Compatible with the Parameter Type

We must know that we can pass only arguments that are of type compatible

with the related parameter, declared in the method’s parameters list.

For example, if the parameter that the method expects in its declaration is of

type float, by invocation of the method we can pass a value that is of type

int. It will be converted by the compiler to a value of type float and then

will be passed to the method for its execution:

static void PrintNumber(float number)

{
 Console.WriteLine("The float number is: {0}", number);
}

static void Main()
{

 PrintNumber(5);
}

In the example, by invocation of PrintNumber() in the method Main(), first

the integer literal 5 (that implicitly is of type int) is converted to the related

floating point value 5.0f. Then the so converted value is passed to the

method PrintNumber().

As can be expected, the result of that code execution is:

The float number is: 5.0

Compatibility of the Method Parameter and the Passed Value

The result from the calculation of an expression, passed as argument, must

be of the same type, as the type of the declared parameter is, or

compatible with that type (refer to the passage above).

So if a parameter of type float is required, we can pass the value calculated

by an expression that is of a type int. E.g. in the example above, if instead of

PrintNumber(5), we called the method, with 5 replaced by the expression

2+3, the result of the calculation of that expression must be of type float

(one that the method expects), or of a type that can be converted to float

with no loss (in our case this is int). So let’s modify a little the method

Main() from the passage above, to illustrate what just was explained:

Chapter 9. Methods 313

static void Main()
{
 PrintNumber(2 + 3);

}

In this example first the summing will be executed. Then the integer result 5

will be converted to its floating point equivalent 5.0f. When this is done the

method PrintNumberſ…ƀ will be invoked with argument 5.0f. The result

again will be:

The float number is: 5.0

Keeping the Declaration Sequence of the Arguments Types

Values, that are passed to the method, in the time of its invocation, must be

in the same order as the parameters are declared in the parameters list. This

is due to the method signature, mentioned above.

To clarify, let’s discuss the following example: we have a method

PrintNameAndAge(), in which method declaration is a parameters list, with

parameters of type’s string and int, ordered as shown below:

Person.cs

class Person

{
 static void PrintNameAndAge(string name, int age)
 {

 Console.WriteLine("I am {0}, {1} year(s) old.", name, age);
 }
}

Let’s add a method Main() to our class, in that method we will invoke the

PrintNameAndAge() method. Now let’s try to pass parameters in reverse (as

types) order, so instead "John" and 25, we will use 25 and "John":

static void Main()

{
 // Wrong sequence of arguments
 Person.PrintNameAndAge(25, "John");

}

The compiler in this case will not be able to find a method that is called

PrintNameAndAge, which accepts parameters in the sequence int and

string. That is why, the compiler will notify for an error:

314 Fundamentals of Computer Programming with C#

The best overloaded method match for
'Person.PrintNameAndAge(string, int)' has some invalid arguments

Variable Number of Arguments (var-args)

So far, we examined declaration of methods for which the parameters list

coincides with the count of the arguments we pass to that method, by its

invocation.

Now we will see how to declare methods that allow the count of arguments to

be different any time the method is invoked, so to meet the needs of the

invoking code. Such methods are often called methods with a variable

number of arguments.

Let’s we look at the example, that calculates the sum of a given array of book

prices, the one that already was explained above. In that example, as a

parameter we passed an array of type decimal that consists of the prices of

the chosen books:

static void PrintTotalAmountForBooks(decimal[] prices)
{
 decimal totalAmount = 0;

 foreach (decimal singleBookPrice in prices)
 {

 totalAmount += singleBookPrice;
 }
 Console.WriteLine(

 "The total amount of all books is:" + totalAmount);
}

Defined in this way, the method suppose, that always before its invocation,

we will have created an array with numbers of type decimal and they will be

initialized with certain values.

After we created a C# method that accepts variable number of parameters, is

possible, whenever a list of parameters from the same type must be

passed, instead of passing the array that consists of those values, to pass

them directly, as arguments, separated by comma.

In our case with the books, we need to create a new array, especially for that

method invocation:

decimal[] prices = new decimal[] { 3m, 2.5m };

PrintTotalAmountForBooks(prices);

Chapter 9. Methods 315

However, if we add some code (we will see it in a moment) to the method

declaration, we will be able to directly pass list with the books prices, as

method arguments:

PrintTotalAmountForBooks(3m, 2.5m);

PrintTotalAmountForBooks(3m, 5.1m, 10m, 4.5m);

Such invocation is possible only if we have declared the method in a way, so it

accepts variable number of arguments (var-args).

How to Declare Method with Variable Number of Arguments

Formally the declaration of a method with variable number of arguments is

the same as the declaration of any other method:

static <return_type> <method_name>(<parameters_list>)
{

 // Method's body
}

The difference is that the <parameters_list> is declared with the keyword

params in the way shown below:

<parameters_list> =
 [<type1> <name1>[, <typei> <namei>], params <var_type>[]
<var_name>]

where i= 2, 3, …

The last element from the list declaration – <params>, is the one that

allows passing of random count of arguments of type <var_type>, for each

invocation of the method.

In the declaration of that element, before its type <var_type> we must add

params: "params <var_type>[]". The type <var_type> can be either

primitive or by reference.

Rules and special characteristics for the other elements from the method’s
parameters list, that precede the var-args parameter <var_name>, are the

same, as those we discussed in the section "Method Parameters".

To clarify what was explained so far, we will discuss an example for

declaration and invocation of a method with variable number if arguments:

static long CalcSum(params int[] elements)
{

 long sum = 0;

 foreach (int element in elements)
 {

316 Fundamentals of Computer Programming with C#

 sum += element;
 }
 return sum;

}

static void Main()

{
 long sum = CalcSum(2, 5);
 Console.WriteLine(sum);

 long sum2 = CalcSum(4, 0, -2, 12);

 Console.WriteLine(sum2);

 long sum3 = CalcSum();
 Console.WriteLine(sum3);

}

The example sums the numbers, as their count is not known in advance. The

method can be invoked with one, two or more parameters, as well as with no

parameters at all. If we execute the example we will get the following result:

7

14
0

Variable Number of Arguments: Arrays vs. "params"

From the formal definition, given above, of parameter that allows passing of

variable number of arguments by the method invocation – <var_name>, is

actually a name of an array of type <var_type>. By the method invocation,

the arguments of type <var_type> or compatible type that we pass to the

method (with no care for their count) will be kept into this array. Then they

will be used in the method body. The access and dealing with these

parameters is in the same way we do when we work with arrays.

To make it clearer we will modify the method that calculates the sum of the

prices of chosen books, to get variable number of arguments:

static void PrintTotalAmountForBooks(params decimal[] prices)
{
 decimal totalAmount = 0;

 foreach (decimal singleBookPrice in prices)

 {

 totalAmount += singleBookPrice;
 }

Chapter 9. Methods 317

 Console.WriteLine("The total amount of all books is:" +
 totalAmount);
}

As we can see the only change is to change the declaration of the array

prices with adding params before decimal[]. In the body of our method,

"prices" is still an array of type decimal, so we use it in the same way as

before.

Now we can invoke our method, with no need to declare in advance an array

of number and pass it as an argument:

static void Main()
{

 PrintTotalAmountForBooks(3m, 2.5m);
 PrintTotalAmountForBooks(1m, 2m, 3.5m, 7.5m);
}

The result of the two invocations will be:

The total amount of all books is: 5.5

The total amount of all books is: 14.0

Since prices is an array, it can be assumed that we can declare and initialize

an array before invocation of our method. Then to pass that array as an

argument:

static void Main()

{
 decimal[] pricesArr = new decimal[] { 3m, 2.5m };

 // Passing initialized array as var-arg:

 PrintTotalAmountForBooks(pricesArr);
}

The above is legal invocation, and the result from that code execution is the

following:

The total amount of all books is: 5.5

Position and Declaration of a Method with Variable Arguments

A method, that has a variable number of its arguments, can also have other

parameters in its parameters list.

The following code, for example, has as a first parameter an element of type

string, and right after it there can be one or more parameters of type int:

318 Fundamentals of Computer Programming with C#

static void DoSomething(string strParam, params int[] x)
{
}

The one thing that we must consider is that the element from the parameters

list in the method’s definition, that allows passing of a variable number of

arguments, must always be placed at the end of the parameters list.

The element of the parameters list, that allows passing of

variable number of arguments by invocation of a method,

must always be declared at the end of the method’s

parameters list.

So, if we try to put the declaration of the var-args parameter x, shown in the

last example, not at the last place, like so:

static void DoSomething(params int[] x, string strParam)
{

}

The compiler will return the following error message:

A parameter array must be the last parameter in a formal
parameter list

Limitations on the Count for the Variable Arguments

Another limitation, for the methods with variable number of arguments, is

that the method cannot have in its declaration more than one parameter that

allows passing of variable numbers of arguments. So if we try to compile a

method declared in the following way:

static void DoSomething(params int[] x, params string[] z)
{
}

The compiler will return the already known error message:

A parameter array must be the last parameter in a formal

parameter list

This rule can be taken as a special case of the rule for the var-args position,

i.e. the related parameter to be at the end of the parameters list.

Chapter 9. Methods 319

Specifics of Empty Parameter List

After we got familiar with the declaration and invocation of methods with

variable number of arguments, one more question arises. What would happen

if we invoke such method, but with no parameters?

For example, what would be the result of the invocation of our method that

calculates the sum of books prices, in a case we did not liked any book:

static void Main()

{
 PrintTotalAmountForBooks();

}

As can be seen this code is compiled with no errors and after its execution the

result is as follow:

The total amount of all books is: 0

This happens because, although, we did not pass any value to our method, by

its invocation, the array decimal[] prices is created, but it is empty (i.e. it

does not consists of any elements).

This has to be remembered, because even if we did not initialize the array,

C# takes care to do so for the array that has to keep the parameters.

Method with Variable Number of Arguments – Example

Bearing in mind how we define methods with variable number of arguments,

we can write the Main() method of a C# program in the following way:

static void Main(params string[] args)
{

 // Method body comes here
}

The definition above is valid and is accepted without any errors by the

compiler.

Optional Parameters and Named Arguments

Named arguments and optional parameters are two different functionalities of

the C# language. However, they often are used together. These parameters

are introduced in C#, version 4.0. Optional parameters allow some

parameters to be skipped when a method is invoked. Named arguments on

their side, allow method parameter values to be set by their name, instead of

their exact position in the parameters list. These two features in the C#

language syntax are very useful in cases, when we invoke a method with a

different combination of its parameters.

320 Fundamentals of Computer Programming with C#

Declaration of optional parameters can be done just by using a default value

in the way shown below:

static void SomeMethod(int x, int y = 5, int z = 7)
{

}

In the example above y and z are optional and can be skipped upon method’s
invocation:

static void Main()

{
 // Normal call of SomeMethod
 SomeMethod(1, 2, 3);

 // Omitting z - equivalent to SomeMethod(1, 2, 7)
 SomeMethod(1, 2);

 // Omitting both y and z – equivalent to SomeMethod(1, 5, 7)
 SomeMethod(1);
}

We can pass a value by a particular parameter name, by setting the

parameter’s name, followed by a colon and the value of the parameter. An

example of using named arguments is shown below:

static void Main()
{
 // Passing z by name and x by position

 SomeMethod(1, z: 3);

 // Passing both x and z by name
 SomeMethod(x: 1, z: 3);

 // Reversing the order of the arguments passed by name
 SomeMethod(z: 3, x: 1);
}

All invocations in the sample above are equivalent to each other – parameter

y is skipped, but x and z are set to 1 and 3. The only difference between the

second and third call is that the parameter values are calculated in the same

order they are passed to the method, in the last invocation 3 will be

calculated before 1. In this example all parameters are constants and their

purpose is only to clarify the idea of named and optional parameters.

However, the mentioned consideration may lead to some unexpected behavior

when the order of parameters calculation matters.

Chapter 9. Methods 321

Method Overloading

When in a class a method is declared and its name coincides with the name of

another method, but their signatures differ by their parameters list (count

of the method’s parameters or the way they are arranged), we say that there

are different variations / overloads of that method (method

overloading).

As an example, let’s assume that we have to write a program that draws

letters and digits to the screen. We also can assume that our program has

methods for drawing strings DrawString(string str), integers –

DrawInt(int number), and floating point digits – DrawFloat(float number)

and so on:

static void DrawString(string str)
{

 // Draw string
}

static void DrawInt(int number)
{
 // Draw integer

}

static void DrawFloat(float number)

{
 // Draw float number
}

As we can see the C# language allows us to create variations of the same

method Drawſ…ƀ, called overloads. The method below gets combinations of

different parameters, depending of what we want to write on the screen:

static void Draw(string str)

{
 // Draw string
}

static void Draw(int number)
{
 // Draw integer

}

static void Draw(float number)

{
 // Draw float number

322 Fundamentals of Computer Programming with C#

}

The definitions of the methods above are valid and will compile without error

messages. The method Drawſ…ƀ is also called overloaded.

Method Parameters and Method Signature

As mentioned above, there are only two things required in C# to specify a

method signature: the parameter type and the order in which the

parameters are listed. The names of the method’s parameters are not

significant for the method’s declaration.

The most important aspect of creating an unambiguous

declaration of a method in C# is the definition of its

signature and the type of the method’s parameters in

particular.

For example in C#, the following two declarations are actually declarations of

one and the same method. That’s because the parameter type in each of their

parameters is the same – int and float. So the names of the variables we

are using – param1 and param2 or p1 and p2, are not significant:

// These two lines will cause an error

static void DoSomething(int param1, float param2) { }
static void DoSomething(int p1, float p2) { }

If we declare two or more methods in one class, in the way shown above, the

compiler will show an error message, which will look something like the one

below:

Type '<the_name_of_your_class>' already defines a member called
'DoSomething' with the same parameter types.

If we change the parameter type from a given position of the parameter

list to a different type, in C# they will count as two absolutely different

methods, or more precisely said, different variations of a method with

the same name.

For example if in the second method, the second parameter from the

parameter list of any of the methods – float p2, is declared not as float,

but as int for example, we will have two different methods with two

different signatures – DoSomething(int, float) and DoSomething(int,

int). Now the second element from their signature – parameter list, is

different, due to difference of their second element type:

static void DoSomething(int p1, float p2) { }
static void DoSomething(int param1, int param2) { }

Chapter 9. Methods 323

In this case even if we type the same name for the parameters, the compiler

will accept this declaration, because they are practically different methods:

static void DoSomething(int param1, float param2) { }
static void DoSomething(int param1, int param2) { }

The compiler will accept the code again if we declare two variations of the

method, but this time we are going to change the order of the parameters

instead of their type.

static void DoSomething(int param1, float param2) { }
static void DoSomething(float param2, int param1) { }

In the example above the order of the parameter types is different and

this makes the signature different too. Since the parameter lists are different,

it plays no role that the name (DoSomething) is the same for both methods.

We still have different signatures for both methods.

Overloaded Methods Invocation

Since we have declared methods with the same name and different

signatures, we can invoke each of them as any other method – just by using

their name and arguments. Here is an example:

static void PrintNumbers(int intValue, float floatValue)
{
 Console.WriteLine(intValue + "; " + floatValue);

}

static void PrintNumbers(float floatValue, int intValue)

{
 Console.WriteLine(floatValue + "; " + intValue);
}

static void Main()
{

 PrintNumbers(2.71f, 2);
 PrintNumbers(5, 3.14159f);
}

When the code executes, we will see, that the first invocation refers to the

second method, and the second invocation refers to the first method. Which

method will be invoked depends on the type of the used parameters. The

result after executing the code above is:

2.71; 2

5; 3.14159

324 Fundamentals of Computer Programming with C#

The lines below, however, will not compile and execute:

static void Main()
{

 PrintNumbers(2, 3);
}

The reason for this not to work is that the compiler tries to convert both

integer numbers to suitable types before passing them to any of the methods

named PrintNumbers. In this case, however, these conversions are not equal.

There are two possible options – either to convert the first parameter to

float and call the method PrintNumbers(float, int) or to convert the

second parameter to float and call the method PrintNumbers(int, float).

This ambiguity has to be manually resolved, and one way to do so is shown in

the example below:

static void Main()
{

 PrintNumbers((float)2, (short)3);
}

The code above will be compiled without errors, because after the arguments

are transformed, it is clearly decided which method we refer to –

PrintNumbers(float, int).

Methods with Coinciding Signatures

We will discuss some other interesting examples that show how to use

methods. Let’s take a look at an example of an incorrect redefinition

(overload) of methods:

static int Sum(int a, int b)
{

 return a + b;
}

static long Sum(int a, int b)
{
 return a + b;

}

static void Main()

{

 Console.WriteLine(Sum(2, 3));
}

Chapter 9. Methods 325

The code from the example will show an error message upon compilation

process, because there are two methods with same parameters lists (i.e. with

same signature) which return results of different types. This makes the

method invocation ambiguous, so it is not allowed by the compiler.

Triangles with Different Size – Example

It would be a good time now to give a little bit more complex example, since

we know now how to declare methods with parameters, how to invoke them

as well as how to get result back from those methods. Let’s assume we want

to write a program, which prints triangles on the console, as those shown

below:

n = 5
1
1 2

1 2 3
1 2 3 4
1 2 3 4 5

1 2 3 4
1 2 3
1 2

1

n = 6

1
1 2
1 2 3

1 2 3 4
1 2 3 4 5
1 2 3 4 5 6

1 2 3 4 5

1 2 3 4
1 2 3

1 2
1

A possible solution of this task is given below:

Triangle.cs

using System;

class Triangle
{

326 Fundamentals of Computer Programming with C#

 static void Main()
 {
 // Entering the value of the variable n

 Console.Write("n = ");
 int n = int.Parse(Console.ReadLine());
 Console.WriteLine();

 // Printing the upper part of the triangle
 for (int line = 1; line <= n; line++)

 {
 PrintLine(1, line);

 }

 // Printing the bottom part of the triangle
 // that is under the longest line

 for (int line = n - 1; line >= 1; line--)
 {
 PrintLine(1, line);

 }
 }

 static void PrintLine(int start, int end)
 {
 for (int i = start; i <= end; i++)

 {
 Console.Write(i + " ");
 }

 Console.WriteLine();
 }
}

Let’s discuss how the example code works. We should think of the triangles as

sequences of numbers, placed on separate lines, since we can print each line

directly on the console. In order to print each line of the triangle on the

console we need a tool. For this purpose we created the method

PrintLineſ…ƀ.

In this method, by using a for-loop, we print a line of consequent numbers.

The first number from this sequence is the first parameter from the method’s
parameter list (the variable start). The last element of the sequence is the

number, passed to the method, as second parameter (the variable end).

Notice that since the numbers are sequential, the length (count of the

numbers) of each line corresponds to the difference between the second

parameter end and the first one – start, from the methods parameters list

(this will be useful later, when we build the triangles).

Chapter 9. Methods 327

Then we implement an algorithm that prints the triangles, as whole figures, in

the Main() method. With another method int.Parse, we get the n variable

and print the empty line.

Now with two sequential for-loops we build the triangle according to the

entered n. With the first loop we print all the lines that draw the upper part of

the triangle and the middle (longest) line inclusively. With the second loop, we

print the rest of the triangle’s lines that lie below the middle line.

As we mentioned above, the line number, corresponds to the element count

placed on the appropriate line. And since we always start from 1, the line

number will always be equal to the last element in the sequence, which has to

be printed on that line. So, we can use this when we call PrintLineſ…ƀ, as it

requires exactly that for its parameters.

Note that, the count of the elements on each next line, increases with one and

so the last element of each sequent line must be greater (one is added) than

the last element of the preceding line. That’s why at each loop iteration of the

first for-loop, we pass to the PrintLineſ…ƀ method, as first parameter 1, and

as a second – the current value of the variable line. Since, on each execution

of the body of the loop, line increases with one, at each iteration

PrintLineſ…ƀ the method prints a line that has more than one element than

the preceding line.

With the second loop, that draws the part under the middle triangle line, we

follow the reverse logic. The downward we print lines, the shorter lines we

print. Each line decreases with one element according to its preceding line.

Hence, we set the initial value for the variable line in the second loop: line =

n-1. After each iteration of the loop line decreases with one and pass it as

second parameter to the PrintLineſ…ƀ.

We can improve the program, as we take the logic that prints the triangle, in

a separate method. It can be noticed that, logically, the triangle print is

clearly defined, that is why we can declare a method with one parameter (the

value that we get from the keyboard) and to invoke it from the Main()
method:

static void Main()
{
 Console.Write("n = ");

 int n = int.Parse(Console.ReadLine());
 Console.WriteLine();

 PrintTriangle(n);
}

static void PrintTriangle(int n)
{
 // Printing the upper part of the triangle

328 Fundamentals of Computer Programming with C#

 for (int line = 1; line <= n; line++)
 {
 PrintLine(1, line);

 }

 // Printing the bottom part of the triangle

 // that is under the longest line
 for (int line = n - 1; line >= 1; line--)
 {

 PrintLine(1, line);
 }

}

If we execute the program and enter for n the value 3, we will get the

following result:

n = 3

1

1 2
1 2 3
1 2

1

Returning a Result from a Method

So far, we always were given examples, in which the method does something

like printing on the console, and nothing more. Methods, however, usually do

not just execute a simple code sequence, but in addition they often return

results. So let’s take a look at how this actually happens.

Declaring a Method that Returns a Result

Let’s see again how to declare a method.

static <return_type> <method_name>(<parameters_list>)

Earlier we said that at the place of <return type> we will always put void.

Now we will extend this definition, as we will see, that void is not the only

choice. Instead of void we can return any type either primitive (int, float,

double, …) or by reference (as string or array), depending on the type of

the result that the method shall return after its execution.

For example, take a method that calculates the area of a square and instead

of printing it to the console returns it as a result. So, the declaration would

look as follows:

Chapter 9. Methods 329

static double CalcSquareSurface(double sideLength)

As can be seen the result of the calculation of the area is of type double.

How to Use the Returned Value?

When the method is executed and returns a value, we can imagine that C#

puts this value where this method has been invoked from. Then the program

continues work with that value. Respectively, that returned value, we can use

for any purpose from the calling method.

Assigning to a Variable

We can also assign the result of the method execution to a variable of an

appropriate type:

// GetCompanyLogo() returns a string

string companyLogo = GetCompanyLogo();

Usage in Expressions

After a method returns a result, it can be used then in expressions too.

So for example, to find the total price for invoice calculation, we must get the

single price and to multiply it by the quantity:

float totalPrice = GetSinglePrice() * quantity;

Using the Returned Value as Method Parameter

We can pass the result from the method execution as value in the parameters

list from another method:

Console.WriteLine(GetCompanyLogo());

In this example, in the beginning we invoke the method GetCompanyLogo(),

and write it as an argument of the method WriteLine(). Right after the

GetCompanyLogo() method finishes its execution it will return a result. Let’s
say that the result will be "Microsoft Corporation". Then C# will put the

result returned by the method’s execution in the method’s place. So we can

assume that this is represented in the code in the following way:

Console.WriteLine("Microsoft Corporation");

Returned Value Type

As it was already explained above, the result that a method returns can be of

any type – int, string, array and so on. When, however, instead of a type

330 Fundamentals of Computer Programming with C#

we use the keyword void instead of a type, this mean that method does not

return value.

The Operator "return"

To make a method return value, the keyword return must be placed in the

method’s body, followed by an expression that will be returned as a result

by the method:

static <return_type> <method_name>(<parameters_list>)
{
 // Some code that is preparing the method's result comes here

 return <method's_result>;
}

Respectively <method's_result>, is of type <return_type>. For example:

static long Multiply(int number1, int number2)

{
 long result = number1 * number2;
 return result;

}

In this method after the multiplication, by using the return the method will

produce as a result of its execution the integer variable result.

Compatibility of the Result and the Retuning Type

The result returned by the method, can be of a type that is compatible (the

one that can be implicitly converted) with the type of the returned value

<return_type>.

For example, we can modify the following example, in which the type of the

returned value to be of type float, but not int and to keep the following

code in the shown way:

static float Multiply(int number1, int number2)

{
 int result = number1 * number2;
 return result;

}

In this case after the multiplication execution, the result will be of type int.

Even though the type of the expression after the return keyword is not of

type float, it can be returned, because it can be implicitly converted to

float.

Chapter 9. Methods 331

Using an Expression after the Return Operator

It is allowed (whenever this will not make the code look complicated / ugly) to

directly put some expression after the keyword return:

static int Multiply(int number1, int number2)
{
 return number1 * number2;

}

In this situation, after the calculation of number1 * number2, the result that

this expression produces will be replaced where the expression is, and hence

will be returned by the return operator.

Features of the Return Operator

The execution of return does two things:

- Stops immediately the method execution.

- Returns the result of the executed method to the calling method.

In relation to the first feature of return operator, we must note that, since it

stops the method’s execution (and no code after it and before the method

body’s closing bracket will be executed), we should not put any code after the

return operation.

Though, if we do so, the compiler will show a warning message:

static int Add(int number1, int number2)
{

 int result = number1 + number2;
 return result;

 // Let’s try to "clean" the result variable here:
 result = 0;
}

In this example the compilation will be successful, but for the lines after

return, the compiler will output a warning message like this:

Unreachable code detected

When the method has void for returned value type, then after return, there

would be no expression to be returned. In that case return usage is only

used to stop the method’s execution:

static void PrintPositiveNumber(int number)
{

332 Fundamentals of Computer Programming with C#

 if (number <= 0)
 {
 // If the number is NOT positive, terminate the method

 return;
 }
 Console.WriteLine(number);

}

Multiple Return Statements

The last thing that must be said about the operator return is that it can be

called from several places in the code of our method, but should be

guaranteed that at least one of the operators return that we have used, will

be reached while executing the method.

So let’s take a look, at the example for a method that gets two numbers, and

then upon their values return 1 if the first is greater than the second, 0 if both

are equal, or -1 if the second is greater than the first:

static int CompareTo(int number1, int number2)
{
 if (number1 > number2)

 {
 return 1;
 }

 else if (number1 == number2)
 {
 return 0;

 }
 else
 {

 return -1;

 }
}

Having multiple return statements is usual in programming and is typical

for methods that check several cases, like the above.

Why Is the Returned Value Type not a Part of the

Method Signature?

In C# it is not allowed to have several methods that have equal name and

parameters, but different type of returned value. This means that the

following code will fail to compile:

static int Add(int number1, int number2)

Chapter 9. Methods 333

{
 return (number1 + number2);
}

static double Add(int number1, int number2)
{

 return (number1 + number2);
}

The reason for this limitation is that the compiler doesn’t know which of both

methods must be invoked. Both methods have the same signature

(sequence of parameters along with their types). Note that the return value is

not part of the method’s signature. That is why on the declaration of the

methods an error message like the one below will be returned:

Type '<the_name_of_your_class>' already defines a member called
'Add' with the same parameter types

Where <the_name_of_your_class> is the name of the class in which we have

tried to declare those methods.

Fahrenheit to Celsius Conversion – Example

Now we have to write a program that for a given (by the user) body

temperature, measured in Fahrenheit degrees, has to convert that

temperature and output it in Celsius degrees, with the following message:

"Your body temperature in Celsius degrees is X", where X is respectively

the Celsius degrees. In addition if the measured temperature in Celsius is

higher than 37 degrees, the program should warn the user that they are ill,

with the following message "You are ill!".

For starters, we can make fast research in Internet and find out that the

Celsius to Fahrenheit formula is like this one: °C = (°F - 32) * 5 / 9,

where respectively with °C we mark the temperature measured in Celsius,

and with °F – the temperature in Fahrenheit.

After analysis of the current task, we can see that it can be divided to

subtasks as follow:

- Take the temperature measured in Fahrenheit degrees as an input from

the console (the user must enter it).

- Convert that number to its corresponding value, for temperature

measured in Celsius.

- Print a message for the converted temperature in Celsius.

- If the temperature is found to be higher than 37 ºC, print a message

that the user is ill.

334 Fundamentals of Computer Programming with C#

A sample implementation of the above described algorithm is given below in

the class TemperatureConverter:

TemperatureConverter.cs

using System;

class TemperatureConverter
{
 static double ConvertFahrenheitToCelsius(double temperatureF)

 {

 double temperatureC = (temperatureF - 32) * 5 / 9;
 return temperatureC;

 }

 static void Main()

 {
 Console.Write(
 "Enter your body temperature in Fahrenheit degrees: ");

 double temperature = double.Parse(Console.ReadLine());

 temperature = ConvertFahrenheitToCelsius(temperature);

 Console.WriteLine(
 "Your body temperature in Celsius degrees is {0}.",

 temperature);

 if (temperature >= 37)

 {
 Console.WriteLine("You are ill!");
 }
 }

}

The operations for input of the temperature and output of the messages are

trivial, so we will skip their explanation, as we will focus on the approach to

convert the temperatures. As we can see this is a logical unit that can be

separated in its own method. By doing so, not only the program source code

will get clearer, but moreover, we will have the opportunity to reuse that

piece of code, whenever we need it, so we just will use the same method. So

we declare the method ConvertFahrenheitToCelsiusſ…), with list of one

parameter with the name temperatureF that represents the measured value

of the temperature in Fahrenheit. Then the method returns a result of type

double, which represents the calculated body temperature in Celsius degrees.

In the method’s body we use the formula we found on Internet (and write it

according to the C# syntax).

Chapter 9. Methods 335

Since we are done with this step from our task solution, we have decided that

the rest of the steps we will not need to be in separate methods, so we just

implement them in the Main() method of the class.

By the method double.Parseſ…ƀ, we get the user’s body temperature as we

have previously asked him for it, by the following message: "Enter your

body temperature in Fahrenheit degrees".

Then we invoke the method ConvertFahrenheitToCelsius() and we store

the returned result in the variable temperature.

By the method Console.WriteLine() we print the message "Your body

temperature in Celsius degrees is X", where X is replaced with the value

of temperature.

The last step we must make is to check whether the temperature is higher

than 37 degrees in Celsius or no. This can be done by using a conditional

statement if. So if the temperature is higher than 37 degrees Celsius a

message that the user is ill must be printed.

Below is shown a possible output of the program:

Enter your body temperature in Fahrenheit degrees: 100

Your body temperature in Celsius degrees is 37,777778.
You are ill!

Difference between Two Months – Example

Let’s take a look at the following task: we have to write a program which, by

given two numbers, that are between 1 and 12 (so to correspond to a

particular month) prints the count of months between these months. The

message that must be printed to the console must be "There is X months

period from Y to Z.", where X is the count of the months, that we must

calculate, and Y and Z, are respectively the names of the months that mark

start and end of the period.

By reading carefully the task we will try to divide it into subtasks, that can be

more easily solved, and then by combining them to get the whole solution.

We can see that we have to solve the following subtasks:

- To enter the months numbers that mark beginning and end of the

period.

- To calculate the period between the input months.

- To print the message.

- In the message instead of the numbers we entered, for beginning and

end of the period, we must write their corresponding month names in

English.

A possible solution of the given task is shown below:

336 Fundamentals of Computer Programming with C#

Months.cs

using System;

class Months
{

 static string GetMonthName(int month)
 {
 string monthName;

 switch (month)
 {

 case 1:

 monthName = "January";
 break;
 case 2:

 monthName = "February";
 break;
 case 3:

 monthName = "March";
 break;
 case 4:

 monthName = "April";
 break;
 case 5:

 monthName = "May";
 break;
 case 6:

 monthName = "June";
 break;
 case 7:

 monthName = "July";

 break;
 case 8:

 monthName = "August";
 break;
 case 9:

 monthName = "September";
 break;
 case 10:

 monthName = "October";
 break;

 case 11:

 monthName = "November";
 break;

Chapter 9. Methods 337

 case 12:
 monthName = "December";
 break;

 default:
 Console.WriteLine("Invalid month!");
 return null;

 }
 return monthName;
 }

 static void SayPeriod(int startMonth, int endMonth)

 {

 int period = endMonth - startMonth;
 if (period < 0)
 {

 // Fix negative distance
 period = period + 12;
 }

 Console.WriteLine(
 "There is {0} months period from {1} to {2}.",
 period, GetMonthName(startMonth),

 GetMonthName(endMonth));
 }

 static void Main()
 {
 Console.Write("First month (1-12): ");

 int firstMonth = int.Parse(Console.ReadLine());

 Console.Write("Second month (1-12): ");

 int secondMonth = int.Parse(Console.ReadLine());

 SayPeriod(firstMonth, secondMonth);

 }
}

The first task solution is trivial. In the Main() method we will use

int.Parseſ…ƀ so we get the months for the period, the length of which we

aim to calculate.

Then we see that period calculation and message printing can be logically

separated as a subtask, so we create a method SayPeriodſ…ƀ that has two

parameters – numbers representing month numbers that mark the beginning

and the end of the period. This method will not return a value but it will

calculate period and print the message, described in the task, to the console,

by the standard output – Console.WriteLineſ…ƀ.

338 Fundamentals of Computer Programming with C#

Apparently, to find the length of the period between two months, we have to

subtract the number of the beginning month from that of the end month. We

consider also, that if the second month has number less that the number of

the first month, then the user most probably has had the assumption that the

second month is not in the current year, but in the next one. That is why, if

the difference between the two months is negative, we must add 12 to it –

the length of a year in months, and so to find the length of the given period.

Then we must print the message, as for the months names we use the

method GetMonthNameſ…ƀ.

The method that gets the month’s name by its number can be easily created

with conditional switch-case statement, in which we could get the months

for each of the input numbers. If the value is not in the range of [м…м2], the

program will report an error. Later in the chapter "Exception Handling" we

will discuss in details how to notify for an error occurring. You will be shown

how to catch and deal with the exceptions (error notifications). However, for

now we just will print an error message to the console. This is generally an

incorrect behavior and we will learn how to avoid it in the chapter "High-

Quality Code", section "What Should a Method Do".

At the end, in the Main() method we invoke the SayPeriod() method, by

entered numbers for beginning and end of the period. By doing so, we have

completely solved the task.

A possible output, if the input was 2 and 6, is shown below:

First month (1-12): 2
Second month (1-12): 6

There is 4 months period from February to June.

Input Data Validation – Example

In this task we must write a program that asks the user what time it is, by

printing on the console "What time is it?". Then the user must enter two

numbers – one for hours and one for minutes. If the input data represents a

valid time, the program must output the message "The time is hh:mm now.",

where hh respectively means the hours, and mm – the minutes. If the entered

hours or minutes are not valid, the program must print the message

"Incorrect time!".

After we read the task carefully, we see that it can be divided into the

following subtasks:

- Get input data for hours and minutes.

- Check if input data is valid (input validation).

- Print the corresponding message – either an error message, or the valid

time message.

Chapter 9. Methods 339

We consider that getting the input data and printing the output messages will

not be a problem anymore, so we will focus on input data validation, i.e.

validation the numbers for hours and minutes. We know that the hours are in

the range from 0 to 23 inclusive, and the minutes respectively from 0 to 59

inclusive. Since the data (for hours and for minutes) has not the same nature,

we decide to create two separate methods. One of them will check the validity

of hours, while the other will check the validity for minutes.

A solution is shown below:

DataValidation.cs

using System;

class DataValidation
{

 static void Main()
 {
 Console.WriteLine("What time is it?");

 Console.Write("Hours: ");
 int hours = int.Parse(Console.ReadLine());

 Console.Write("Minutes: ");
 int minutes = int.Parse(Console.ReadLine());

 bool isValidTime =
 ValidateHours(hours) && ValidateMinutes(minutes);

 if (isValidTime)
 {
 Console.WriteLine("The time is {0}:{1} now.",

 hours, minutes);

 }
 else

 {
 Console.WriteLine("Incorrect time!");
 }

 }

 static bool ValidateHours(int hours)

 {
 bool result = (hours >= 0) && (hours < 24);
 return result;

 }

 static bool ValidateMinutes(int minutes)

340 Fundamentals of Computer Programming with C#

 {
 bool result = (minutes >= 0) && (minutes <= 59);
 return result;

 }
}

The method that checks the hours is named ValidateHours(), and it gets a

number of type int for the hours, and returns result of type bool, i.e. true if

the input number is a valid hour, otherwise – false:

static bool ValidateHours(int hours)

{
 bool result = (hours >= 0) && (hours < 24);

 return result;
}

We use simple logic to declare method, which checks the validity of the

minutes. We named it ValidateMinutes(), since it gets a parameter that is

integer value and represents the minutes, and returns a value of type bool. If

the input number is a valid minute value, the method will return as result

true, otherwise – false:

static bool ValidateMinutes(int minutes)

{
 bool result = (minutes >= 0) && (minutes <= 59);
 return result;

}

Since we are done with the most complicated part of the task, we declare the

Main() method. In its body we print out the question according to the task –

"What time is it?". Then by the method int.Parseſ…ƀ, we read from the

console the numbers for hours and minutes, then the results are kept in the

integer variables hours and minutes:

Console.WriteLine("What time is it?");

Console.Write("Hours: ");
int hours = int.Parse(Console.ReadLine());

Console.Write("Minutes: ");
int minutes = int.Parse(Console.ReadLine());

The result from the validation is kept in a variable of type bool –

isValidTime, as we sequentially invoke the methods we have already

declared – ValidateHours() and ValidateMinutes(), as of course we pass

Chapter 9. Methods 341

the appropriate variables hours and minutes to each of them. To validate the

input data as a whole, we unite the results from the methods invocation with

the operator for logical "and" &&:

bool isValidTime =
 ValidateHours(hours) && ValidateMinutes(minutes);

After we stored the result, telling us whether the input data is valid or not, in

the variable isValidTime, we use the conditional statement if, cope with the

last problem for the given task – Printing the information to the user, whether

the input is valid or not. With the method Console.WriteLineſ…ƀ, if

isValidTime is true, we print on the console "The time is hh:mm now."

where hh is respectively the value of the variable hours, and mm – of the

variable minutes. In the else part of the conditional statement we print that

the input time was invalid – "Incorrect time!".

A possible output of the program, with correct data, is shown below:

What time is it?

Hours: 17
Minutes: 33
The time is 17:33 now.

And here’s how the program behaves, when the data is incorrect:

What time is it?
Hours: 33
Minutes: -2

Incorrect time!

Sorting – Example

Let’s try to create a method that sorts (puts in order) a set of values in

ascending order. The result will be a string with the sorted numbers.

With this in mind, we suppose that the subtasks we have to cope with are

two:

- How to give the numbers to our method, so it could sort them

- How to sort those numbers

Our method has to take an array on numbers as a parameter, create a sort of

that array and return it:

static int[] Sort(int[] numbers)

{
 // The sorting logic comes here …

342 Fundamentals of Computer Programming with C#

 return numbers;
}

This solution seems to satisfy the task requirements. However, it seems that

we could optimize it more, and instead of the argument to be an integer

array, we can declare it in such way that it could accept a variable count of

integer parameters.

This will save us the need to initialize the array in advance when we invoke

the method with a small set of numbers. In case of bigger sets of input

numbers, as we saw in the subsection for method declaration with a variable

number of arguments, we could directly pass an already initialized array of

integers, instead of passing them as parameters of the method. Hence, the

initial declaration turns into:

static int[] Sort(params int[] numbers)
{

 // The sorting logic comes here …

 return numbers;

}

Now we must to decide how to sort our array. One of the easiest ways for this

to be done is to use the so-called "selection sort" algorithm. This method

considers the array as two parts – sorted and unsorted. The sorted part is in

the left side of the array, while the unsorted is in the right. For each step of

the algorithm, the sorted part expands to the right with one element and the

unsorted shrinks with one element from its left part.

Let’s take a look at an example. So assume we have the following unsorted

array and we want to order its elements by selection sorting:

On each step our algorithms must find the minimal element in the unsorted

part of the array:

Then the minimal element must swap with the first element from the unsorted

part of the array:

10 3 5 -1 0 12 810 3 5 -1 0 12 8

10 3 5 -1 0 12 8

min

10 3 5 -1 0 12 8

min

Chapter 9. Methods 343

Then we look for the minimal element again, from the rest of the unsorted

part of the array (all elements except the first one):

That minimal element now exchanges with the first from the unsorted part:

So this step is repeated until the unsorted part of the array reaches a length

of 0, i.e. it is empty:

As a result the array is sorted:

This is a variant of a code, which implements the algorithm explained above

(selection sort):

static int[] Sort(params int[] numbers)

{
 // The sorting logic:

10 3 5 -1 0 12 8

min

10 3 5 -1 0 12 810 3 5 -1 0 12 8

minmin

-1 3 5 10 0 12 8

min

-1 3 5 10 0 12 8

minmin

-1 3 5 10 0 12 8

min

-1 3 5 10 0 12 8

min

-1 3 5 10 0 12 8

minmin

-1 0 5 10 3 12 8

min

-1 0 5 10 3 12 8

minmin

-1 0 3 5 8 12 10

min

-1 0 3 5 8 12 10-1 0 3 5 8 12 10

minmin

-1 0 3 5 8 12 10

min

-1 0 3 5 8 12 10

min

-1 0 3 5 8 12 10-1 0 3 5 8 12 10

minmin

-1 0 3 5 8 10 12-1 0 3 5 8 10 12

344 Fundamentals of Computer Programming with C#

 for (int i = 0; i < numbers.Length - 1; i++)
 {
 // Loop operating over the unsorted part of the array

 for (int j = i + 1; j < numbers.Length; j++)
 {
 // Swapping the values

 if (numbers[i] > numbers[j])
 {
 int temp = numbers[i];

 numbers[i] = numbers[j];
 numbers[j] = temp;

 }

 }
 } // End of the sorting logic
 return numbers;

}

Let’s declare a method PrintNumbers(params int[]) that outputs the list

with numbers to the console, and then to test this example by writing a few

lines directly into the Mainſ…ƀ method:

SortingEngine.cs

using System;

class SortingEngine
{
 static int[] Sort(params int[] numbers)

 {
 // The sorting logic:
 for (int i = 0; i < numbers.Length - 1; i++)

 {
 // Loop that is operating over the un-sorted part of
 // the array

 for (int j = i + 1; j < numbers.Length; j++)
 {
 // Swapping the values

 if (numbers[i] > numbers[j])
 {
 int oldNum = numbers[i];

 numbers[i] = numbers[j];

 numbers[j] = oldNum;
 }

 }

Chapter 9. Methods 345

 } // End of the sorting logic
 return numbers;
 }

 static void PrintNumbers(params int[] numbers)
 {

 for (int i = 0; i < numbers.Length; i++)
 {
 Console.Write("{0}", numbers[i]);

 if (i < (numbers.Length - 1))
 {

 Console.Write(", ");

 }
 }
 }

 static void Main()
 {

 int[] numbers = Sort(10, 3, 5, -1, 0, 12, 8);
 PrintNumbers(numbers);
 }

}

After this code is compiled and executed, the result is exactly as the one that

was expected – the array is ordered ascending:

-1, 0, 3, 5, 8, 10, 12

Best Practices when Using Methods

In the chapter "High-Quality Programming Code" we will explain in details

about the good practices for writing methods. None the less, we will look at

some of them right now, so we can start applying the good practices and start

developing a good programming style:

- Each method must resolve a distinct, well defined task. This feature

is also known as strong cohesion, i.e. to give a focus onto one single

task, not to several tasks no strongly related logically. A single method

should perform a single task, its code should be well structured, easy to

understand, and easy to be maintained. One method must NOT solve

several tasks!

- A method has to have a good name, i.e. name that is descriptive and

from which becomes clear what the method does. As an example: a

method that sorts numbers should be named SortNumbers(), but

should not be named Number() or Processing() or Method2(). If it

346 Fundamentals of Computer Programming with C#

cannot be given a good name, this may indicate that the method solves

more than one task and, hence, it must be separated into sub-methods.

- Method names should describe an action, so they should contain a

verb or a verb + noun (possibly with an adjective to supplement the

noun). For example good method names are FindSmallestElement(),

Sort(int[] arr) and ReadInputData().

- It is assumed that all the method names in C# will start with capital

letter. PascalCase rule is used, i.e. each new word that is concatenated

to the end of the method name must start with capital letter. For

example: SendEmailſ…ƀ, but not sendEmailſ…ƀ or send_emailſ…ƀ.

- A method must do whatever is described with its name, or it must

return an error (throws an exception). It is not correct that the methods

return wrong or unusual result when it has received invalid input data.

The method resolves the task it is created for, or returns an

error. Any other behavior is incorrect. We will discuss this principle in

"High-Quality Programming Code", section "What a Method Should Do".

- A method must have minimum dependency to the class in which the

method is declared and to other methods and classes. This feature of

the methods is also known as loose coupling. This means that the

method must do its job by using the data that passed to it as

parameters, but not data that can be accessed from other places.

Methods should not have side effects (for example to change some

global variable or print something on the console in the meantime).

- It is recommended that the methods must be short. Methods that are

longer than a computer screen must be avoided. To do so, the logic

implemented in the method is divided by functionality, to several

smaller sub-methods. These sub-methods are then called from the

original place they were cut off.

- To improve the readability of a method and the code structure, it is good

idea a functionality that is well detached logically, to be placed in a

separate method. For example if we have a method that calculates the

volume of a dam lake, the process of calculating the volume of a

parallelepiped can be defined in a separate method. Then that new

method can be invoked as many times as necessary. Hence, the sub-

task is separated from the main task. Since the dam lake can be

taken as set of many different parallelepipeds, calculating the volume of

each one of them is logical detached functionality.

- The last but most important rule is that a method should either do

what it name says or throw an exception. If a method cannot

perform its job (e.g. due to incorrect input), it should throw an

exception, not return invalid or neutral result. How to throw an

exception will be explained in the chapter “Exception Handling”, but for

now you should remember that returning an incorrect result or

having a side effect are bad practices. If a method cannot do its job,

Chapter 9. Methods 347

it should inform its caller about this by throwing appropriate exception.

Methods should never return wrong result!

Exercises

1. Write a code that by given name prints on the console "Hello, <name>!"

(for example: "Hello, Peter!").

2. Create a method GetMax() with two integer (int) parameters, that

returns maximal of the two numbers. Write a program that reads three

numbers from the console and prints the biggest of them. Use the

GetMax() method you just created. Write a test program that validates

that the methods works correctly.

3. Write a method that returns the English name of the last digit of a

given number. Example: for 512 prints "two"; for 1024  "four".

4. Write a method that finds how many times certain number can be

found in a given array. Write a program to test that the method works

correctly.

5. Write a method that checks whether an element, from a certain position

in an array is greater than its two neighbors. Test whether the

method works correctly.

6. Write a method that returns the position of the first occurrence of an

element from an array, such that it is greater than its two neighbors

simultaneously. Otherwise the result must be -1.

7. Write a method that prints the digits of a given decimal number in a

reversed order. For example 256, must be printed as 652.

8. Write a method that calculates the sum of two very long positive

integer numbers. The numbers are represented as array digits and

the last digit (the ones) is stored in the array at index 0. Make the

method work for all numbers with length up to 10,000 digits.

9. Write a method that finds the biggest element of an array. Use that

method to implement sorting in descending order.

10. Write a program that calculates and prints the n! for any n in the range

[1…100].

11. Write a program that solves the following tasks:

- Put the digits from an integer number into a reversed order.

- Calculate the average of given sequence of numbers.

- Solve the linear equation a * x + b = 0.

Create appropriate methods for each of the above tasks.

Make the program show a text menu to the user. By choosing an option

of that menu, the user will be able to choose which task to be invoked.

348 Fundamentals of Computer Programming with C#

Perform validation of the input data:

- The integer number must be a positive in the range [м…рл,ллл,ллл].

- The sequence of numbers cannot be empty.

- The coefficient a must be non-zero.

12. Write a method that calculates the sum of two polynomials with integer

coefficients, for example (3x2 + x - 3) + (x - 1) = (3x2 + 2x - 4).

13. * Write a method that calculates the product of two polynomials with

integer coefficients, for example (3x2 + x - 3) * (x - 1) = (3x3 -

2x2 - 4x + 3).

Solutions and Guidelines

1. Use a method that takes the name as parameter of type string.

2. Use the expression Max(a, b, c) = Max(Max(a, b), c).

To test the code check whether the results from the invoked methods is

correct for a set of examples that cover the most interesting cases, e.g.

Max(1,2)=2; Max(3,-1)=3; Max(-1,-1)=-1; Max(1,2,444444)=444444;

Max(5,2,1)=5; Max(-1,6,5)=6; Max(0,0,0)=0; Max(-10,-10,-10)=-10;

Max(2000000000,-2000000001,2000000002)=2000000002; etc.

You may write a generic method that works not just for int but for any

other type T using the following declaration:

static T Max<T>(T a, T b) where T : IComparable<T> { … }

Read more about the concept of generic methods in the section

“Generic Methods” of chapter “Defining Classes”.

Instead of creating a program that checks whether the method works

correctly, you can search in Internet for information about "unit testing"

and write unit tests for your methods. You may also read about unit

testing in the section “Unit Testing” of chapter “High-Quality Code”.

3. Use the reminder of division by 10 and then a switch statement.

4. The method must take as parameter an array of integer numbers (int[])

and the number that has to be counted (int). Test it with few examples

like this: CountOccurences(new int[]{3,2,2,5,1,-8,7,2}, 2)  3.

5. Just perform a check. The elements of the first and the last position in

the array will be compared only with their left and right neighbor. Test

examples like GreaterThanNeighbours(new int[]{1,3,2}, 1)  true

and GreaterThanNeighbours(new int[]{1}, 0)  true.

6. Invoke the method from the previous problem in a for-loop.

7. There are two solutions:

Chapter 9. Methods 349

First solution: Let the number is num. So while num ≠ 0 we print its last

digit (num % 10) and then divide num by 10.

Second solution: Convert the number into a string string and print it

in a reverse order with a for-loop. This is a bit cheater’s approach.

8. The reader must implement own method that calculates the sum of

very big numbers. The digits on position zero will keep the ones; the

digit on the first position will keep the tenths and so on. When two very

big numbers are about to be calculated, the ones of their sum will be

equal to (firstNumber[0] + secondNumber[0]) % 10, the tenths on

other side will be equal to (firstNumber[1] + secondNumber[1]) % 10

+ (firstNumber[0] + secondNumber[0])/10 and so on.

9. First write a method that finds the biggest element in array and then

modify it to find the biggest element in given range of the array, e.g.

in the elements at indexes [о…мл]. Finally find the biggest number in

the range [1…n-1] and swap it with the first element, then find the

biggest element in the range [2…n-1] and swap it with the second

element of the array and so on. Think when the algorithm should finish.

10. The reader must implement own method that calculates the product of

very big numbers, because the value of 100! does not fit in variable of

type ulong or decimal. The numbers can be represented in an array of

reversed digits (one digit in each element). For example, the number 512

can be represented as {2, 1, 5}. Then the multiplication can be

implemented in the way done in the elementary school (multiply digit by

digit and then calculate the sum).

Another easier way to work with extremely large numbers such as 100! is

by using the library System.Numerics.dll (you have to add a reference

to it in your project). Look for Information in internet about how to use

the class System.Numerics.BigInteger.

Finally calculate in a loop k! for k = 1, 2, …, n.

11. Firstly, create the necessary methods. To create the menu display a

list in which the actions are represented as numbers (1 – reverse, 2 –

average, 3 – equation). Ask the user to choose from 1 to 3.

12. Use arrays to represent the polynomial and the arithmetic rules that

you know from math. For example the polynomial (3x2 + x - 5) can be

represented as an array of the numbers {-5, 1, 3}. Bear in mind that it

is useful at the zero position to put the coefficient for x0 (in our case -5),

at the first position – the coefficient for x1 (in our case 1) and so on.

13. Use the instructions from the previous task and the rules for polynomial

multiplication that you know from math. How to multiple polynomials

can be read here: http://www.purplemath.com/modules/polymult.htm.

http://www.purplemath.com/modules/polymult.htm

